Author Affiliations
Abstract
1 Fang Lu Mesoscopic Optics and Quantum Electronics Laboratory, Department of Electrical and Computer Engineering, University of California, Los Angeles, California 90095, USA
2 e-mail: chengxiang@ucla.edu
3 e-mail: cheewei.wong@ucla.edu
Mode-locked biphoton frequency combs exhibit multiple discrete comblike temporal correlations from the Fourier transform of its phase-coherent frequency spectrum. Both temporal correlation and Franson interferometry are valuable tools for analyzing the joint properties of biphoton frequency combs, and the latter has proven to be essential for testing the fundamental quantum nature, the time-energy entanglement distribution, and the large-alphabet quantum key distributions. However, the Franson recurrence interference visibility in biphoton frequency combs unavoidably experiences a falloff that deteriorates the quality of time-energy entanglement and channel capacity for longer cavity round trips. In this paper, we provide a new method to address this problem towards optimum Franson interference recurrence. We first observe mode-locked temporal oscillations in a 5.03 GHz free-spectral range singly filtered biphoton frequency comb using only commercial detectors. Then, we observe similar falloff trend of time-energy entanglement in 15.15 GHz and 5.03 GHz free-spectral range singly filtered biphoton frequency combs, whereas, the optimum central time-bin accidental-subtracted visibility over 97% for both cavities. Here, we find that by increasing the cavity finesse F, we can enhance the detection probability in temporal correlations and towards optimum Franson interference recurrence in our singly filtered biphoton frequency combs. For the first time, via a higher cavity finesse F of 45.92 with a 15.11 GHz free-spectral range singly filtered biphoton frequency comb, we present an experimental 3.13-fold improvement of the Franson visibility compared to the Franson visibility with a cavity finesse F of 11.14 at the sixth time bin. Near optimum Franson interference recurrence and a time-bin Schmidt number near 16 effective modes in similar free-spectral range cavity are predicted with a finesse F of 200. Our configuration is versatile and robust against changes in cavity parameters that can be designed for various quantum applications, such as high-dimensional time-energy entanglement distributions, high-dimensional quantum key distributions, and wavelength-multiplexed quantum networks.
Photonics Research
2023, 11(7): 1175
Hao Liu 1,5,*†Shu-Wei Huang 1,2†Wenting Wang 1Jinghui Yang 1[ ... ]Chee Wei Wong 1,6,*
Author Affiliations
Abstract
1 Fang Lu Mesoscopic Optics and Quantum Electronics Laboratory, University of California Los Angeles, Los Angeles, California 90095, USA
2 Department of Electrical, Computer, and Energy Engineering, University of Colorado Boulder, Boulder, Colorado 80309, USA
3 Institute of Microelectronics, Singapore, Singapore
4 Université de Bourgogne Franche-Comté, ICB, UMR CNRS 6303, Dijon, France
5 e-mail: haoliu1991@ucla.edu
6 e-mail: cheewei.wong@ucla.edu
Dissipative Kerr soliton generation in chip-scale nonlinear resonators has recently observed remarkable advances, spanning from massively parallel communications, to self-referenced oscillators, and to dual-comb spectroscopy. Often working in the anomalous dispersion regime, unique driving protocols and dispersion in these nonlinear resonators have been examined to achieve the soliton and soliton-like temporal pulse shapes and coherent frequency comb generation. The normal dispersion regime provides a complementary approach to bridge the nonlinear dynamical studies, including the possibility of square pulse formation with flattop plateaus, or platicons. Here we report observations of square pulse formation in chip-scale frequency combs through stimulated pumping at one free spectral range and in silicon nitride rings with +55 fs2/mm normal group velocity dispersion. Tuning of the platicon frequency comb via a varied sideband modulation frequency is examined in both spectral and temporal measurements. Determined by second-harmonic autocorrelation and cross correlation, we observe bright square platicon pulse of 17 ps pulse width on a 19 GHz flat frequency comb. With auxiliary-laser-assisted thermal stabilization, we surpass the thermal bistable dragging and extend the mode-locking access to narrower 2 ps platicon pulse states, supported by nonlinear dynamical modeling and boundary limit discussions.
Photonics Research
2022, 10(8): 1877
Author Affiliations
Abstract
1 Fang Lu Mesoscopic Optics and Quantum Electronics Laboratory, University of California, Los Angeles, California 90095, USA
2 Current address: Division of Physical Metrology, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Republic of Korea
3 Current address: CACI-LGS Labs, Florham Park, New Jersey 07932, USA
4 Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
5 OEwaves Inc., Pasadena, California 91107, USA
6 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, USA
7 e-mail: ysj@kriss.re.kr
Tracing a resonance frequency of a high quality factor (Q) optical cavity facilitates subpicometer displacement measurements of the optical cavity via Pound–Drever–Hall (PDH) locking scheme, tightly synchronizing a laser frequency to the optical cavity. Here we present observations of subfemtometer displacements on a ultrahigh-Q single-crystal MgF2 whispering-gallery-mode microcavity by frequency synchronization between a 1 Hz cavity-stabilized laser and a resonance of the MgF2 cavity using PDH laser-cavity locking. We characterize not only the displacement spectral density of the microcavity with a sensitivity of 1.5×10-16 m/Hz1/2 over the Fourier offset frequency ranging from 15 mHz to 100 kHz but also a 1.77 nm displacement fluctuation of the microcavity over 4500 s. Such measurement capability not only supports the analysis of integrated thermodynamical and technical cavity noise but allows for minute displacement measurements using laser-cavity locking for ultraprecise positioning, metrology, and sensing.
Photonics Research
2022, 10(5): 05001202
Author Affiliations
Abstract
1 National Laboratory of Solid State Microstructures, School of Physics, School of Electronic Science and Engineering, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
2 Institute for Quantum Information and State Key Laboratory of High Performance Computing, College of Computing, National University of Defense Technology, Changsha 410073, China
3 Mesoscopic Optics and Quantum Electronics Laboratory, University of California Los Angeles, California, CA 90095, USA
We report an observation of the second-order correlation between twin beams generated by amplified spontaneous parametric down-conversion operating above threshold with kilowatt-level peak power, from a periodically poled LiTaO3 crystal via a single-pass scheme. Photocurrent correlation was measured because of the bright photon streams, with raw visibility of 37.9% or 97.3% after electronic filtering. As expected in our theory, this correlation is robust and insensitive to parametric gain and detection loss, enabling important applications in optical communications, precision measurement, and nonlocal imaging.
amplified spontaneous parametric down-conversion robust second-order correlation high-gain twin beams 
Chinese Optics Letters
2020, 18(12): 121902
Author Affiliations
Abstract
We investigate the ultrafast nonlinear phenomena of picosecond chirped non-ideal hyperbolic secant pulse evolution in silicon photonic nanowire waveguides with sum frequency generation cross-correlation frequency-resolved optical gating and nonlinear Schr?dinger equation modeling. Pulse broadening and spectral blue shifts are observed experimentally, and they show remarkable agreements with numerical predictions. Nonlinear losses dominate the pulse broadening and limit the spectral bandwidth broadening induced by self-phase modulation. The initial chirp results in noticeable bandwidth compression and aggravation of blue shifts in the presence of nonlinear losses, whereas it plays a negligible role in the output pulse temporal intensity distribution.
190.7110 Ultrafast nonlinear optics 320.5390 Picosecond phenomena 320.1590 Chirping 
Chinese Optics Letters
2014, 12(s1): S11905

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!